Import multiple files from Dropbox folder into PowerBI and Excel (via PowerQuery) at once

Below you’ll find a video where you can see how easy it is to import multiples files from a Dropbox folder into PowerBI or Excel at once.

There are 2 different methods to grant access to your Dropbox: Grant access to the whole Dropbox or to a (newly created ) folder only. I will present the folder-method, as granting access to your whole Dropbox is really dangerous in my eyes – unless you are prepared to share it all publicly: The token generated will allow anyone to read your data. So also all those people who you’ve sent this beautiful dashboard where you just forgot that it contained your token…

To make it super-easy for you, I’ve created a function that you can download here: fnDropboxFolder

The code for it I’ve got from this thread in the PowerBI forum, which contains some additional useful information and a link to a solution with a custom connector for PowerBI, making it easy to deploy in a corporate environment (designed by Igor Cotruta).

Just watch how it works:

Some screenshots to follow along:

Read more

Bill of Material (BOM) Explosion Part2: Costing in Excel and PowerBI

Following up on the BOM-explosion: A comment reminded me that I had missed to present the costing techniques to calculate the total costs of each (sub)-product.

Reversing the aggregation direction

What I had shown is how to “aggregate” from parent down to child-level to retrieve the total quantity of each component within a BOM (“How many of each (sub-) components do we have to order (or build) for that bike?”) (1).

Now we reverse the aggregation direction and aggregate the total (!) quantities back up to the parents (2).

And, as this doesn’t make too much sense in an economical way, the second aggregation will be their prices (3). This will give us the sum of all part-costs (“How much will the order of all the parts cost us?”). This is also very useful for planning purposes or reconciliation of prices for intermediate products with your master data.

And if your model holds sales-data as well, you can calculate the totals costs of your total sales within each period. (4)

VAR 1: Using classical hierarchies

Read more

Performance difference between Excel and PowerBI with M is huge!

I knew that the performance of M in the query editor of PowerBI was much better than in Excel, but only today I discovered the incredible difference we actually have here:

If you want to apply the BOM-solution I’ve posted here, you’ll soon discover that the performance in Excel starts to suck with large datasets. Performance decreases exponentially and my sample datasets with 4 levels and 100k rows didn’t went through, 16 GB RAM constantly at the limit, unable to do any other task at the same time.

In contrast, performance in PowerBI totally blew me away: Memory management is different. Rise in RAM-consumption was always below 3 GB, even with my largest dataset (a 5-level 1Mio (!) rows BOM table that exploded to 3,8 Mio rows). Also no sweat in CPU, so I was able to easily perform other tasks at the same time on my laptop.

Read more

Bill of Materials (BOM) solution in Excel and PowerBI

Handling multilevel bill of materials (BOM) without VBA in Excel and PowerBI is now a piece of cake: Just pass 4 parameters into the M-function below and it will return a table that holds everything you need for:

  1. Explosion

  2. Order list (“total quantities”)

3. Implosion (“where used”): Will be covered in next blogpost

The format of the input-data for this function needs to be like the example used from the Adventure Works 2008-database, where all products on the top of the hierarchy also have an entry in the child-column (the components), leaving the parent column blank:


Read more

Automatical or Bulk- Rename Columns in Power BI and Power Query

Edit 7th Feb 2017: Friendly reader Roknic pointed out in the comments below that there’s actually an existing function for it in M: Table.TransformColumnNames 🙂

So the first of my example below would actually look like this:

Table.TransformColumnNames(Source, each Text.Replace(_, " ", "_"))

But still keeping my original post here, as the transformations in them might help for other use cases:

If you want to rename all of your table’s columns with a common rule, like “replace all spaces by underscore” or just “delete all spaces”, check out this easy method:

The above formula will replace all spaces (” “) by underscores (“_”).

How does it work:

The 2nd argument in the Table.RenameColumns-formula is a list of lists, just like in Table.TransformColumnType from this article. So we apply the same technique here: List.Transform transforms a single element from a list into a list-item, whose 2nd argument will be calculated with a Text.Replace-function.


Rename Columns Variations

Only replace FirstN or LastN elements from the column names:

Read more

Conditions in FirstN, LastN and other xN-functions in M, PowerBI and Power Query

Today I discovered that we can use conditions in many of the N-selecting functions where one/I would normally expect just a number-expression for the N:

Table.RemoveFirstN( table as table, optional countOrCondition as any)

So apart from being able to select a certain number of rows to be removed, we can pass a condition (as function). This condition will iteratively be checked for every row in the table (from top or bottom) and as long as every (next) step returns true, the resulting range will be removed. So as soon as one row breaks the condition, the process will stop.

I find that totally awesome, as we can now remove all top-rows who have an empty field in Column3 like this for example:

Table.RemoveFirstN(<MyTable>, each each (_[Column3] = null or _[Column3] = “”))

Yes, this will remove the first sequence of consecutive nulls in the table. So all other rows with nulls in the table coming later after a non-null value has “broken in”, will remain.

This is the list of function, where you can use this M-agic:

Enjoy & stay queryious 🙂

Comfort Functions for Easy Profit & Loss statements in Power BI and Excel – Part2

Here comes some long awaited comfort functions for part 2 of my easy P&L series. In the first section I’ve presented the general principle on how to work with a structure using an accounts-group-table. Today I will present 2 alternatives to define the reports without specifying single accounts. So if a new accounts are added to the chart of accounts, you don’t have to adjust your report definitions: Just make sure that to fill in all the fields in your account-group-table and you’re ready to go 🙂

No need to specify single accounts

So you only need to adjust your report definitions if you add new group items. If that’s still too much, take the 2nd solution, which will even eliminate that requirement:

  1. Individual Account Layout: Just define each subtotal and determine for which subtotals single accounts shall be shown

No more specification of individual accounts

How to use it:

How to use Individual Report Layout

2. Ultrashort Account Layout: Further simplification of just defining the groups (hierarchy) that shall be shown (with option to filter on one of them)

No need to define individual group items

How to use it:

How to use Ultrashort Layout

So these 2 different layouts will both produce the same reports incl. all accounts – just like in the first example. So you can choose which layout-style suits you best – actually, you can use all 3 in parallel. You just have to make sure to grab your pivot-rows from the correct tables and in Excel to grab the matching measures, as they all have their own bridge-tables (which need to be used in the measures):


How it works

Read more

Easy Profit & Loss (and other account) statements in PowerBI and Excel – Part2

Welcome to part 2 of my series of easy Profit & Loss and other account statements in Power BI and Excel. In the first part I introduced the general principle of creating asymmetric shaped reports who use just one measure per column (you should have read this article in order to understand this post here).

How the technique works

This technique capitalises the aggregation power of the Vertipaq engine and creates a bridge-table between your DimAccount-table and the ReportsAccountsLayout-table. In there for every line of your report, all accounts that belong to the (sub-)totals are matched (“AccountsAllocation”). This table can get very long, but the engine can handle this easily:

Different use case: Account-groups-tables

In the first example we’ve worked with a chart of accounts, which had a parent-chield-hierarchy defining all the subtotals of the report. In this example we’re working with a different setup, using the good old DimAccountsGroups-table. Just one row per account and the columns are coming in pairs, containing the group-criteria and the sort-order for the report:

Individual Report-Layout

We also need a second table (ReportsAccountsLayout) that holds the definitions of the report-layouts like this:

Read more

Dynamic & bulk type transformation in Power Query, Power BI and M

This is just a quick code-share-of-the-day of different scenarios for dynamic type transformation of multiple columns at once.

The syntax to transform the format of 2 columns (“Column1” and “Column2”) in a table (“Source”) looks like this:

Now if you would like to do one of the following:

1. Force all columns of the table to be transformed to one type (text)

The second argument of Table.TransformColumnTypes is a list of lists, whose elements contain 2 arguments: The name of the column to transform and the type to be applied.

For this dynamic approach we start with a list of the table’s column names (Table.ColumnNames) and transfer it magically to a list of list, using List.Transform with an expression with curly brackets again like this: each {_, type text}: This operation iterates through every element of the list (List.Transform) and performs the actions that follow the “each” on every element of the list (which is represented by the underscore: _)

2. Transform all newly added columns of a table to one specific type

Imagine you have a table with different column types where users can add new columns with random names. You want these columns automatically to be converted to text:

Same procedure as the first, just that you need to identify the newly added column names. Therefore you use List.Intersect with the two tables to compare in list-format (curly brackets) as shown in line 3 above.

3. Transform all columns whose name are in a list to one specific type

Let’s close with the easiest case, which you’d probably be able to find out by yourself: Say your query returns a dynamic list somewhere with column names who then shall all be converted to a specific type:

You can directly reference the List as the first argument of the List.Transform-command.

You can download the file here: ChgTypeOfColumns.xlsx

Enjoy & stay queryious 🙂


Easy Profit and Loss and other (account) scheme reports in Power BI and Power Pivot using DAX

This is about an easy way to create typical finance reports like Profit and Loss using DAX that (unlike all other solutions I’ve come across so far) can be handled with very basic knowledge of this language like this:


The trick

The trick that makes my solution so easy lies in the fact that it requires no aggregation functions of the output-mediums like:

  • pivot-tables: who struggle with asymetric logic and are not available in Power BI so far
  • cubefunctions: who are not available in PowerBI so far

So we have to build the details as well as all aggregations into the solution as it is and don’t rely on/use any aggregation functions (This means for Excel: We have to turn off subtotals as well as totals in our pivot tables. It means for Power BI: Hurray! Finally a solution where the lack of pivot-tables doesn’t matter).

How to

The aim is to create a table/matrix with (account) details and aggregations into the rows and different slices of time-Intervalls or comparisons into the column sections. As for the columns, this will be covered by measures like [Actuals], [Budget], [PreviousPeriods], [Differences in all shapes…]. And – as the values in the columns should be the same – I’d prefer to use only one measure per column – that is fully sliceable and works on all (sub-) totals of course. … Ok – so some dreams later I found it:

MyMagicMeasure := CALCULATE([StandardMeasure], AccountsAllocation)

So you just wrap simple measures like Act=SUM(Fact[Amount]), Plan=SUM(Plan[Amount]), DiffPlan_Act=[Plan]-[Act] … into the CALCULATE together with the bridge-table as the filter-argument:

This is the many2many-technique in it’s simplest form (PostFromMarcoRusso). It all goes via simple aggregation on all accounts found in the filter context:


Our  bridge-table “AccountsAllocation” consists of one account number per simple account and has multiple rows for the (sub-)totals – being all accounts that belong to them:


The ConsKey stands for the row in our report (1) and the AccountKey_ holds the account numbers that are going to be aggregated (many (for the sub-totals) and 1 for the account-rows). So all we need is this unique and simple aggregation on AccountKey for every row in the report – with a filter from the Reports-table via our bridge table to the DimAccounts, who then filters our FactTables: 1 -> many -> 1 -> many.

Read more